HMG CoA reductase inhibition by Simvastatin gets rat β-Myosin heavy chain disappeared: A statin paradox

نویسندگان

  • Laura Trapani
  • Marco Segatto
  • Adam Jozwiak
  • Ewa Swiezewska
  • Valentina Pallottini
چکیده

3-hydroxy-3methylglutaryl Coenzyme A reductase, the rate limiting enzyme of mevalonate pathway, generates, in addition to cholesterol, a range of products involved in several biological functions: oligoprenyl groups, dolichol and ubiquinone. The latter, in particular, participates in electron transport chain and, in turn, in tissue energy supply. The enzyme is inhibited by statins that, besides lowering cholesterolemia, seem to impair human energy-dependent myocardial functions (e.g. stroke volume, cardiac output, and contractile index). The modulation of heart contractile properties could be explained by the decrease of ventricle ubiquinone content and/or by putative changes in proportion of the different myosin heavy chain isoforms. Since we previously demonstrated that chronic statin treatment modifies myosin heavy chain isoform pattern in skeletal muscle impairing its functional properties, this work was aimed at investigating the effects of statin chronic treatment on both ventricle ubiquinone content and myosin heavy chain isoforms. Our results showed that simvastatin treatment leads to a reduced amount of rat ventricle ubiquinone and to β myosin heavy chain disappearance. Thus, statins which are prescribed to prevent cardiovascular disease, might induce cardiac metabolic and structural modifications whose functional implications on contractility are still to be established and carefully considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression of chronic hypoxic pulmonary hypertension by simvastatin.

The 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase inhibitor, simvastatin, has been shown to attenuate chronic hypoxic pulmonary hypertension (CHPH). Here, we assess whether simvastatin is capable of inducing regression of established CHPH and explore potential mechanisms of statin effect. Rats (n = 8 in each group) were exposed to chronic hypoxia (10% Fi(O(2))) for 2 or 4 wk. Simvastatin t...

متن کامل

Structural mechanism for statin inhibition of HMG-CoA reductase.

HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGR) catalyzes the committed step in cholesterol biosynthesis. Statins are HMGR inhibitors with inhibition constant values in the nanomolar range that effectively lower serum cholesterol levels and are widely prescribed in the treatment of hypercholesterolemia. We have determined structures of the catalytic portion of human HMGR comple...

متن کامل

Improvement of hepatic bioavailability as a new step for the future of statin

Statins (HMG-CoA reductase inhibitors) are a group of highly efficient pharmacological agents used for reducing blood cholesterol level and prevention/treatment of cardiovascular disease. Adverse reactions during statin treatment affect quite significant numbers of patients (reportedly from 5% to 20%), with more side effects occurring at higher doses. Reduced statin dosing can be achieved by im...

متن کامل

Novel synthetic inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity that inhibit tumor cell proliferation and are structurally unrelated to existing statins.

Pilot-scale libraries of eight-membered medium ring lactams (MRLs) and related tricyclic compounds (either seven-membered lactams, thiolactams or amines) were screened for their ability to inhibit the catalytic activity of human recombinant 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase in vitro. A dozen of the synthetic compounds mimic the inhibition of purified HMG-CoA reductase ac...

متن کامل

HMG CoA Reductase Inhibitors Inhibit HCV RNA Replication of HCV Genotype 1b but Not 2a

Replication of hepatitis C virus (HCV) is regulated by statin, one of 3-hydroxy-3-methylglutaryl CoA reducatase (HMG CoA reductase) inhibitors that block mevalonate pathway and cholesterol biosyntheis, which has been used usefully for health improvement and disease control in clinic. In order to know which statin can be used to inhibit HCV replication, we examined the effects of HCV genotype 1b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013